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Banach Tarski and equidecompositions

Theorem (Banach-Tarski, 1924)

The unit ball in R3 can be partitioned into finitely many pieces
which can be rearranged by isometries to form two unit balls.

If a is an action of a group Γ on a set X , then A,B ⊆ X are
a-equidecomposable if there is a finite partition A0, . . . ,An of A
and group elements γ0, . . . , γn ∈ Γ so that γ0A0, . . . , γnAn is a
partition of B.

We say a is paradoxical if we can partition X into two sets A,B
that are each a-equidecomposable with X .
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Examples

I Let Z act on itself via left translation. Then Z \ {0} is
equidecomposable with Z.

I Let the free group on two generators F2 = 〈a, b〉 act on itself
via left translation. Let A1, A−1, B1, B−1 be the reduced
words beginning with a, a−1, b, b−1, respectively. Then
F2 = A1 t aA−1 = B1 t bB−1. This action is paradoxical.

I Let B be the unit ball in R3. Then one can find two rotations
of B \{0} which generate a copy of F2. By using a paradoxical
decomposition of F2 in each orbit, one can show that the
action of these two rotations on B \ {0} is paradoxical. This is
how one proves the Banach-Tarski paradox.
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Amenability

Consider the action of Z on itself via left translation. Let U be a
nonprincipal ultrafilter on ω, and define the measure µ on subsets
of Z by

µ(A) = lim
n∈U

|A ∩ {−n, . . . , n}|
|{−n, . . . , n}|

I µ(Z) = 1.

I µ is a finitely additive measure on all subsets of Z.

I µ is invariant under the action of Z. That is, for all A ⊆ Z
and g ∈ Z,

µ(A) = µ(g · A).

Theorem (Tarski)

An action a of a group Γ on a set X is not paradoxical if and only
if it is amenable. That is, it admits a finitely additive a-invariant
measure on all subsets of X such that µ(X ) = 1.
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Matchings and equidecompositions

Combinatorially, equidecompositions are matching problems.

Suppose a is an action of a group Γ on a set X . Then A,B ⊆ X
are a-equidecomposable if and only if there is a finite set S ⊆ Γ so
that there is a perfect matching of the graph on A t B where there
is an edge from x ∈ A to y ∈ B if γ · x = y for some γ ∈ S .

One can use Hall’s theorem to give a short proof of Tarski’s result
that an action is amenable iff it is not paradoxical.

Theorem (Hall, Rado)

A locally finite bipartite graph G with bipartition {B0,B1} has a
perfect matching iff for every finite subset F of B0 or B1,

|N(F )| ≥ |F |

where N(F ) is the set of neighbors of F .
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Descriptive graph combinatorics

There is a growing research program in descriptive set theory over
the last 20 years which seeks to understand classical combinatorial
problems like coloring or matching, but where we consider definable
graphs, and definable solutions to combinatorial problems on them.

A Borel graph is a graph whose vertices are the elements of a
Polish space X and whose edge relation is Borel as a subsets of
X × X .

Recent survey:

I Kechris and M., “Descriptive graph combinatorics”.

Our goal is to describe some recent applications of these ideas to
geometrical paradoxes.
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No Borel version of Hall’s theorem

Question (Miller, 1993)

Is there a Borel analogue of Hall’s matching theorem?

This was originally answered in the negative by Laczkovich (1988).

An easy counterexample: let A be a single unit ball in R3 and B be
two unit balls in R3. Let S be the set of isometries needed to
equidecompose A and B in the Banach-Tarski paradox, and let G
be the associated graph on AtB. Then G satisfies Hall’s condition
(since there is an equidecomposition). However, G has no Borel
(or even Lebesgue measurable) perfect matching, since there is no
Lebesgue measurable solution to the Banach-Tarski paradox.
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Baire measurable paradoxes

Theorem (Dougherty-Foreman 1994, answering Marczewski 1930)

There is a paradoxical decomposition of the unit ball in R3 using
pieces with the Baire property.

Their proof is quite specific to the Banach-Tarski paradox.
Recently, we have a more general result:

Theorem (M.-Unger, 2015)

Suppose Γ is a group acting on a Polish space X by Borel
automorphisms. If the action has a paradoxical decomposition,
then it admits a paradoxical decomposition where each piece has
the Baire property.
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A Baire measurable matching lemma

Our proof uses the following Baire measurable version of Hall’s
theorem

Theorem (M.-Unger, 2015)

Suppose G is a locally finite bipartite Borel graph on a Polish
space with bipartition {B0,B1} and there exists an ε > 0 such that
for every finite set F with F ⊆ B0 or F ⊆ B1,

|N(F )| ≥ (1 + ε)|F |.

Then there is a Baire measurable matching of G .

Laczkovich’s counterexample to Miller’s question shows that we
cannot improve ε to 0.
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Lebesgue measurable equidecompositions

Theorem (Banach-Tarski, 1924)

Suppose A,B ⊆ R3 are bounded sets with nonempty interior.
Then A and B are equidecomposable.

Theorem (Grabowski, Máthé, Pikhurko, 2014)

Suppose A,B ⊆ R3 are bounded sets with nonempty interior and
the same Lebesgue measure. Then A and B are equidecomposable
using Lebesgue measurable pieces.

Their proof uses a measurable version of Hall’s matching theorem
due to Lyons and Nazarov.
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Tarski’s circle squaring problem

The theory of amenability can be used to show that Lebesgue
measure on R2 can be extended to a finitely additive
isometry-invariant measure on R2. Hence, there is no version of
the Banach-Tarski paradox in R2.

Question (Tarski, 1925)

Are a disc and a square in R2 (necessarily of the same area)
equidecomposable?

Laczkovich (1990) gave a positive answer to this question.

Dubins, Hirsch, and Karush (1963) had shown that Tarski’s circle
squaring cannot be solved uses pieces whose boundaries consist of
a single Jordan curve.
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A Borel solution to Tarski’s circle squaring problem

Theorem (M.-Unger, 2016)

Tarski’s circle squaring problem can be solved using Borel pieces.
More generally, suppose k ≥ 1 and A,B ⊆ Rk are bounded Borel
sets such that λ(A) = λ(B) > 0, ∆(∂A) < k , and ∆(∂B) < k.
Then A and B are equidecomposable by translations using Borel
pieces.

Here λ is Lebesgue measure, ∂A is the boundary of A, and ∆ is
upper Minkowski dimension.

This is a Borel version of a general equidecomposition theorem
originally due to Laczkovich (1992). Grabowski, Máthé, and
Pikhurko had proved a measurable/Baire measurable version in
2015.

Our equidecomposition of the circle and square uses ≈ 10200 pieces
which are finite boolean combinations of Σ0

4 sets.
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In the remaining two lectures, we sketch the proof of this theorem.
The proof heavily uses ideas from the study of flows in networks,
and also recent work of Gao, Jackson, Krohne and Seward on
special witnesses to the hyperfiniteness of Borel actions of Zd .


